Indian Statistical Institute, Bangalore

B. Math.

Third Year, First Semester
Analysis on Graphs

Final Examination
Maximum marks: 100

Date : November 20, 2023, 2023
Time: 3 hours
Instructor: B V Rajarama Bhat

In the following G is a simple graph (undirected and without loops), with vertex set $V(G)=$ $\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. J denotes $n \times n$ matrix whose entries are all equal to 1 .
(1) Suppose $i, j \in V(G)$. Show that there exist real numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ with following property: $\sum_{i=1}^{n} \mu_{i}=0$ and given any $j, k \in V(G)$ there exist scalars $s_{1}, s_{2}, \ldots s_{n}$ such that the number of walks of length m from j to k is given by,

$$
\sum_{i=1}^{n} s_{i} \mu_{i}^{m}
$$

for $m \geq 1$. (Hint: Recall that the number of walks are counted using powers of the adjacency matrix.)
(2) Show that the number of spanning trees of a graph G with Laplacian L is equal to

$$
\begin{equation*}
\frac{1}{n^{2}} \operatorname{det}(L+J) \tag{21}
\end{equation*}
$$

(You may carefully state the matrix-tree theorem and use it).
(3) Show that the algebraic connectivity is monotone, that is, if $a c(G)$ denotes the second smallest eigenvalue of the Laplacian of G, and G is edge-disjoint union of two graphs H_{1}, H_{2} on same vertex set, then

$$
\begin{equation*}
a c(G) \geq a c\left(H_{1}\right)+a c\left(H_{2}\right) \geq a c\left(H_{1}\right) \tag{21}
\end{equation*}
$$

(4) Let K_{m} be the complete graph with m-vertices, where $m \geq 4$. Let L_{m} be the line-graph of K_{m}, that is, the edges of K_{m} are the vertices of L_{m} and there is an edge between them in L_{m}, if they have a common vertex in K_{m}. Show that L_{m} is strongly regular. Compute the parameters of strong regularity. Use this to compute the spectrum of L_{m}. Recall that the spectrum of a strongly regular graph with parameters (n, k, a, c) are $k, \lambda_{+}, \lambda_{-}$with multiplicities $1, m_{+}, m_{-}$respectively, where

$$
\lambda_{ \pm}=\frac{1}{2}(a-c \pm \sqrt{\Delta})
$$

and

$$
m_{ \pm}=\frac{1}{2}\left[(n-1) \pm \frac{(n-1)(c-a)-2 k}{\sqrt{\Delta}}\right]
$$

with $\Delta=(a-c)^{2}+4(k-c)$.
[21]
(5) Let $M=\{1,2,4,5,7,8\}$ considered as a group under multiplication modulo 9 . Let H be the Cayley graph of M with generating set $S=\{2,5\}$. Write down adjacency, Laplacian and distance matrices of H. Compute the spectral radii of these matrices (Justify your claims).

